Article 1313

Title of the article

UNSATURATED CUBATURE FORMULAE OF HYPERSINGULAR INTEGRATION

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.ru
Zakharova Yuliya Fridrikhovna, Candidate of physical and mathematical sciences, associate professor, sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.ru
Grinchenkov Grigoriy Igorevich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.ru
Semov Mikhail Aleksandrovich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.ru

Index UDK

517.392

Abstract

Background. Hypersingular integrals are widely used in such areas as aerodynamics, theory of elasticity, electrodynamics, aerodynamics and geophysics. However, their closed form calculation is rarely possible. Therefore, using approximation methods for calculating hypersingular integrals is urgent for calculus mathematics. A lot of papers deal with this problem. I. V. Boikov and Yu. F. Zaharova have published a series of papers on constructing optimal methods for calculating hypersingular integrals. In 1975 in the USSR Academy of Sciences Proceedings (volume 221, № 1) K. I. Babenko announced the discovery of fundamentally new unsaturated numerical methods. A distinctive feature of the latter is the ability to automatically adjust to the classes of problem solving correctness. The analysis of the quadrature and cubature formulae of calculating hypersingular integrals showed that they are saturated. Therefore, it seems significant to work out unsaturated algorithms to calculate hypersingular and polyhypersingular integrals. This paper deals with this task.
Materials and methods. Developing methods of calculating unsaturated hypersingular integrals is based on the constructive theory of functions and splines.
Results. The optimal quadrature formulae for calculating hypersingular integrals of the same class have been derived. Unsaturated quadrature and cubature formulae for calculating one-dimensional hypersingular and polyhypersingular integrals have been derived. A comparison of the efficiency of calculating hypersingular integrals using saturated and unsaturated quadratures has been made.
Conclusions. Unsaturated methods make it possible to effectively calculate hypersingular integrals while solving practical problems when a priori smoothness of integrable functions is unknown.

Key words

quadrature formulae, cubature formulae, hypersingular integrals, unsaturated algorithms, optimal algorithms.

Download PDF
References

1. Hadamard J. Lecons sur la Propagation des Ondes et les Equations de l'Hydrodynamique. Herman. Paris, 1903, 320 p. (reprinted by Chelsea. New York, 1949).
2. Adamar Zh. Zadacha Koshi dlya lineynykh uravneniy s chastnymi proizvodnymi giperbolicheskogo tipa [Cauchy problem for linear equations with partial derivatives of hyperbolic type]. Moscow: Nauka, 1978, 351 p.
3. Chikin L. A. Uchenye zapiski Kazanskogo gos. un-ta. [Proceedings of Kazan State University]. 1953, vol. 113, no. 10, pp. 53–105.
4. Boikov I. V. International Journal of Mathematics and Mathematical Sciences. 2001, no. 28 (3), pp. 127–179.
5. Boykov I. V. Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov: monogr. [Aproximate methods of singular and hypersingular integrals calculation: monograph]. Penza: Izd-vo Penz. gos. un-ta, 2009, part 2, 252 p.
6. Boykov I.V., Ventsel E.S., Boykova A.I. Applied Numerical Mathematics.2009, vol. 59, no. 6, pp.1366–1385.
7. Boykov I. V., Dobrynina N. F., Domnin L. N. Priblizhennye metody vychisleniya integralov Adamara i reshenie gipersingulyarnykh integral'nykh uravneniy [Approximate methods of Hadamard integral calculation and solution of hypersingular equations]. Penza: Izd-vo Penz. gos. un-ta, 1996, 188 p.
8. Crisculo G. A. Journal of Comput. Appl. Math. 1997, vol. 78, pp. 255–275.
9. Hildenbrand J., Kuhn G. Eng. Anal. Boundary Elements. 1992, vol. 10, pp. 209–217.
10. Kolm P., Rokhlin V. Computers and Mathematics with Applications. 2001, vol. 41, pp. 327–352.
11. Lutz E., Gray L. J., Ingraffe A. R. Boundary Elements. CMP, Southampton, 1991, vol. XIII, pp. 913–925.
12. Krishnasamy G., Rizzo F. J., Rudolhpi T. J. Development in Boundary Element Methods. Sci. Publ., Barking, 1991, vol. 7, Appl.
13. Monegato G. Journal of Computational and Applied Mathematics. 1994, vol. 50, pp. 9–31.
14. Zakharova Yu. F. Optimal'nye metody vychisleniya mnogomernykh singulyarnykh integralov i resheniya singulyarnykh integral'nykh uravneniy: dis. kand. fiz.-mat. nauk [Optimal methods of multidimensional singular integrals calculation and solution of singular integral equations: dissertation to apply for the degree of the candidate of physical and mathematical sciences]. Saransk,2004,197 p.
15. Natanson I. P. Konstruktivnaya teoriya funktsiy [Constructive theory of functions]. Moscow; Leningrad: GIFML, 1949, 688 p.

 

Дата создания: 18.07.2014 12:25
Дата обновления: 20.07.2014 07:23